skip to main content


Search for: All records

Creators/Authors contains: "Arora, Srishti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complex fluids exhibit a variety of exotic flow behaviours under high stresses, such as shear thickening and shear jamming. Rheology is a powerful tool to characterise these flow behaviours over the bulk of the fluid. However, this technique is limited in its ability to probe fluid behaviour in a spatially resolved way. Here, we utilise high-speed imaging and the free-surface geometry in drop impact to study the flow of colloidal suspensions. Here, we report observations of coexisting solid and liquid phases due to shear jamming caused by impact. In addition to observing Newtonian-like spreading and bulk shear jamming, we observe the transition between these regimes in the form of localised patches of jammed suspension in the spreading drop. We capture shear jamming as it occurs via a solidification front travelling from the impact point, and show that the speed of this front is set by how far the impact conditions are beyond the shear thickening transition. 
    more » « less